Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays
نویسندگان
چکیده
We have experimentally investigated quantum interference corrections to the conductivity of graphene nanoribbons at temperatures down to 20 mK studying both weak localization (WL) and universal conductance fluctuations (UCFs). Since in individual nanoribbons at milli-Kelvin temperatures the UCFs strongly mask the weak localization feature we employ both gate averaging and ensemble averaging to suppress the UCFs. This allows us to extract the phase coherence length from both WL and UCF at all temperatures. Above 1 K the phase coherence length is suppressed due to Nyquist scattering, whereas at low temperatures we observe a saturation of the phase coherence length at a few hundred nanometers, which exceeds the ribbon width, but stays below values typically found in bulk graphene. To better describe the experiments at elevated temperatures, we extend the formula for one-dimensional (1D) weak localization in graphene, which was derived in the limit of strong intervalley scattering, to include all elastic scattering rates.
منابع مشابه
Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملParity conservation in electron-phonon scattering in zigzag graphene nanoribbon
Articles you may be interested in Quantum conductance of zigzag graphene oxide nanoribbons Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling Phonon limited transport in graphene nanoribbon field effect transistors using full three dimensional quantum mechanical simulation
متن کاملWafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays
Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom-up synthe...
متن کاملEpitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography.
A process for fabricating dense graphene nanoribbon arrays using self-assembled patterns of block copolymers on graphene grown epitaxially on SiC on the wafer scale has been developed. Etching masks comprising long and straight nanoribbon array structures with linewidths as narrow as 10 nm were fabricated, and the patterns were transferred to graphene. Our process combines both top-down and sel...
متن کاملTunable doping of graphene nanoribbon arrays by chemical functionalization.
We demonstrate the controlled tuning of the electronic band structure of large-arrays of graphene nanoribbons (GNRs) by chemical functionalization. The GNR arrays are synthesized by substrate-controlled metal-assisted etching of graphene in H2 at high temperature, and functionalized with different molecules. From Raman spectroscopy and carrier transport measurements, we found that 4-nitrobenzen...
متن کامل